

BIGGEST BANG FOR YOUR BUCK-Part Deux

Sponsored by:

Housing Development Consortium of Seattle – King County (HDC)

Presenters:

Valerie Thiel SAGE Architectural Alliance

David Reddy 360 Analytics

Lance Deskins Milgard Windows

Becky Bicknell Bellwether Housing

Volunteer effort focused on cost-effective, quality product decisions for affordable multifamily development

2012 Survey Topics

- Cabinets & Counters
- Windows
- Apartment Unit Heating & Ventilation

Respondent Profiles – Owners & Developers

18 total respondents

- 15% Eastern WA / 85% Western WA
- 55% Urban / 30% Suburban / 15% Rural
- 16% serve <30% AMI & homeless.</p>
- 55% serve 30-50% AMI
- 27% serve >50% AMI
- 50% with < 1000 units, 50% with >1000 units
- 75% of units < 1000 sf

Respondent Profiles – Builders / Designers

29 respondents

- 34% Eastern WA/66% Western WA
- 39% Urban / 34% Suburban /27% Rural
- 24% 0-1000 units
- 44% 1001-5000 units
- 32% > 5000 units
- 75% of the units < 1000 sf

Cabinets

26-yr old plywood cabinets – still in great shape!

Cabinets Survey Results - Owners

- 50/50 preference between particle board and plywood for cabinet box.
- Particle board is more susceptible for resident damage, especially to doors, moisture damage
- Plywood is proven as durable, long-lasting product, but is often VE'd during pricing.

Cabinets Survey Results - Owners

Resident considerations

- Lower-income, High % Kids = hard on cabinets and hardware. Particle board doesn't always stand up to abuse.
- Modifications are needed for different populations
 - Drawers are easier to access for seniors
 - Easy to pull hardware
 - Smooth hinges and gliders.

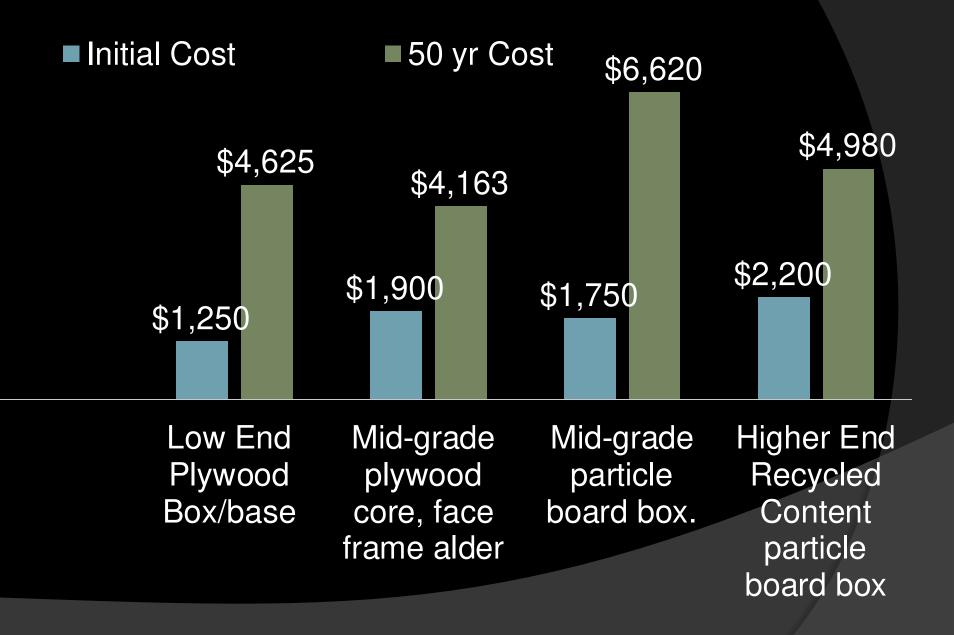
Cabinets Survey Results - Builders

- 50/50 recommendation for particle board and plywood
- Particle board regaining ground as cost-effective,
 reliable, sustainable product
- Plywood recommended for bath vanities
- Project team should coordinate with cabinet vendor to discuss options, sizing, and resident considerations.

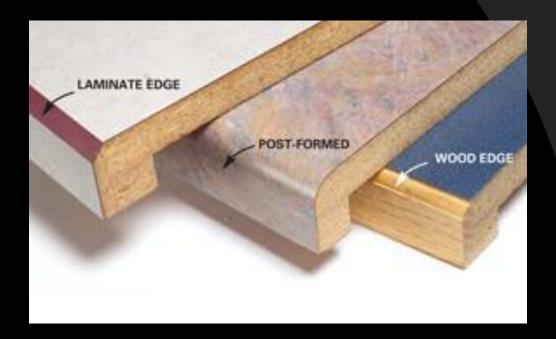
Cabinets-Plywood Considerations

PROS	CONS
Durable, proven in field	Higher cost
Easier to drill through, repair	Cheaper plywood can be irregular*
Stronger, able to support heavier loads	Temperature and humidity warping
More water resistant	

*be wary of foreign products


Cabinets-Particle Board Considerations

PROS	CONS
Up front and replacement cost	Less proven in the field
Uniform appearance and density	Can be damaged during drilling, repairs
Can be made from recycled materials	More water absorbent
	Particle glues can deteriorate with heat, water


Cabinets-Life Cycle Considerations

PRODUCT	Cost per	Replace ment Cost	# of Replac ements		COMMENTS
Low End Plywood Box/base Cabinet	\$1,250	\$1,688	2	\$4,625	20 yr life
Plywood box, face frame oak or alder	\$1,900	\$2,263	1	\$4,163	35 yr life
Mid-Quality particle board box.	\$1,750	\$2,435	2	\$6,620	25 yr life
Higher End Recycled Content particle board box	\$2,200	\$2,780	1	\$4,980	30 yr life

Cabinets-50 Yr Life Cycle Cost

Counters

- •Laminate remains the market favorite for costeffectiveness and selection.
- Backsplash and molded front edge prevent moisture and food damage
- No sealing required, completely non-porous
- Con: easier to burn/scratch

Counters – Non-laminate options – SOLID SURFACE (aka Corian)

<u>Counters – Non-laminate options – ENGINEERED STONE</u>

Counters - Non-laminate options

Solid surface and engineered stone

- more durable, resistant to damage
- can be more sustainable, made from recycled materials
- easier to repair through sanding
- Engineered stone tested in recent projects (Madrona, Renew Max)
- More marketable for higher AMI projects

Counters – Life Cycle Cost (per apt.)

PRODUCT	Cost per	_	# of Replace ments		COST COMMENTS
Laminate Counters with Integrated Backsplash	\$468	\$688	3	\$2,533	assume 15 yr life
Renew-Max:	\$1,006	\$126	3		assume 50 +yr with 12- 15 yr buff/refinishing at \$2/sf
Caesarstone	\$1,669	\$126	3		assume 50 +yr with 12- 15 yr buff/refinishing at \$2/sf

Windows!

Windows Survey Results - Owners

- Priority on long-term durability and energy efficiency rather than lowest cost.
- Building code and Evergreen Standard drives product selection
- Vinyl is predominant material
- Sliders are least expensive and easiest to use and maintain.
- Concern re: adequate light and airflow for home-bound residents.

Windows Best Practices - MATERIAL

VINYL	
PROS	CONS
Cost	Limited colors
Energy performance	Expansion, contraction, warping
Long term maintenance (no painting)	Potential seal failure

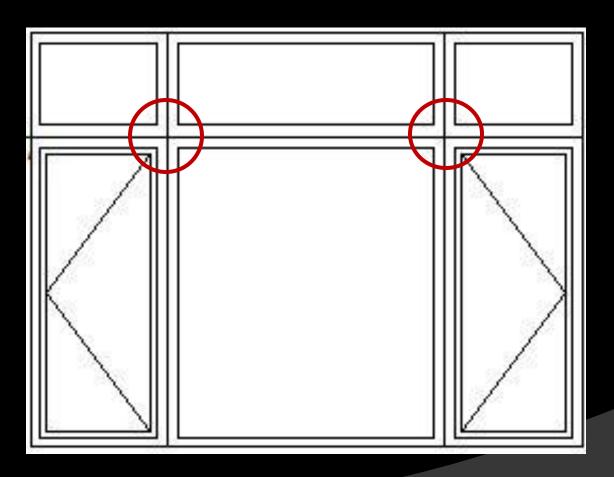
Windows Best Practices - MATERIAL

FIBERGLASS	
PROS	CONS
Strength and durability	Cost
Low Expansion	Heavier than vinyl
Unlimited color choices	Painting needs to be updated
	Mechanically fastened (vs welded)

Windows Best Practices - STYLE

Horizontal and vertical sliders are simplest, least expensive, easiest to maintain, BUT provide least amount of protection from wind-driven rain

Casement and awning windows provide best seal against water and air penetration



Awning

Casement

Multi-pane = higher chance of air/water penetration at connection points and higher replacement cost

Limited operable sf = improved performance

Windows Best Practices - Orientation

You may want to consider different windows for different sides (N-S-E-W) of the building.

Windows with South and West exposure:

Lower SHGC rating

Low-E coating

Interior shading (heavy blinds) or exterior overhead shades

Windows with North and East exposure:

Higher visual transmittance (VT)

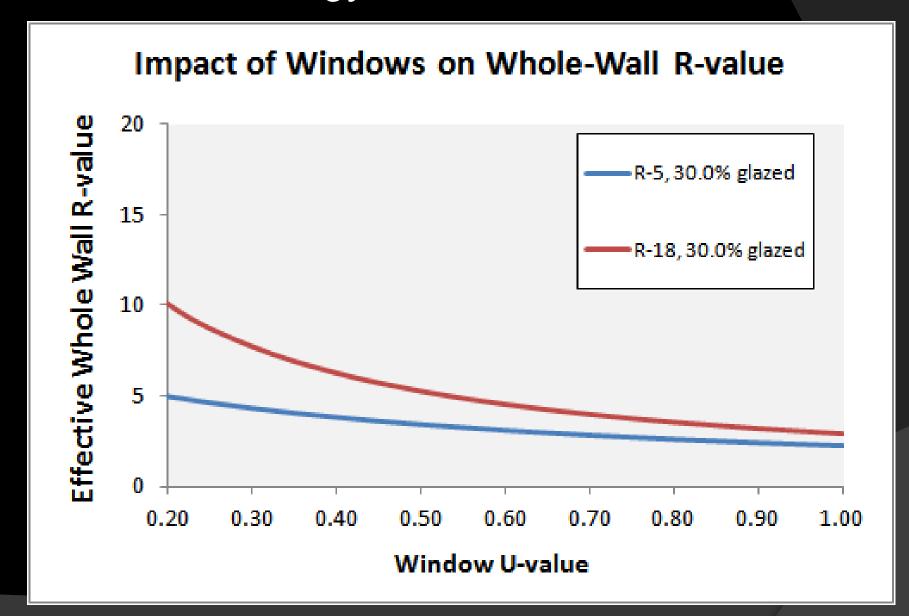
Low-E coating

Windows Best Practices

On-site mock-ups and property management feedback is always helpful for testing out window options before installation!

Maintenance tips:

- Lubricate casement / awning hardware
- Clean and lubricate tracks on sliding windows
 1 x / year
- Wash windows with mild soapy water and rinse.
- Use vinegar and water solution to neutralize the effects of salt water.

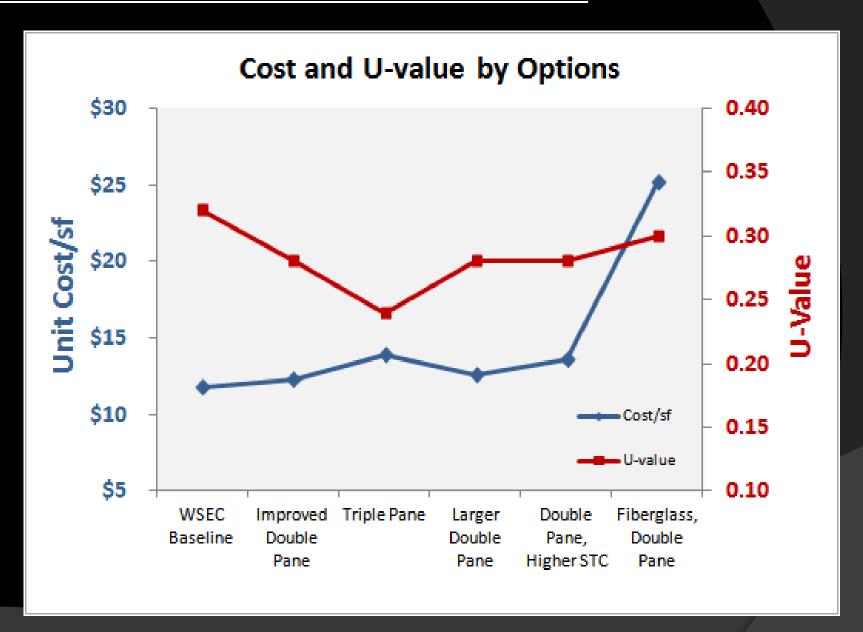

Best Practices: cranks, latches & hardware

Windows - Energy and Considerations

- Putting windows in perspective: How do windows compare to walls?
- What is ideal Window-to-Wall Ratio (WWR): 25%, 30%, 40%?
- How do the various product types differ in cost?
- What is the cost for better performance, and what is the payback?

Windows - Energy Considerations

WINDOW AREA - 45%


WINDOW AREA - 25%

Windows - Cost Considerations

Window Cost/U-Value Comparison				X			1					
Description	U-val	U-val Increase	Fixed		Slider		Awning		Casement		Multi- Pane	
WSEC Baseline (30sf)	0.32	-	\$	228	\$	224	\$	372	\$	398	\$	545
Improved Double pane	0.28	13%	\$	244	\$	241	\$	389	\$	414	\$	561
Triple pane	0.24	25%	\$	311	\$	279	\$	426	\$	472	\$	599
Double pane, larger (50sf)	0.28	13%	\$	596	\$	390	\$	605	\$	733	\$	830
Double pane, higher STC	0.28	13%	\$	336	\$	266	\$	414	\$	440	\$	587
Fiberglass, double pane	0.30	6%	\$	545	\$	567	\$	782	\$	809	\$	1,075

30 sf/window, except "larger" is 50sf Non-fixed have ~50% operable area, except multi-pane is ~75%

Windows - Cost Considerations

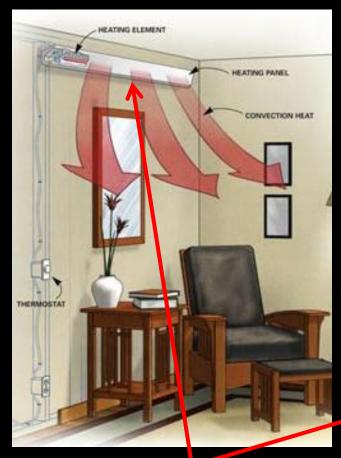
Windows – Example Analysis – 50 x 1BDs

Description	Total Cost	\$ Cost Increase	% Cost increase	Energy Cost Savings	Utility Incentive*	Simple Payback (yrs)
Sliders, U-0.32 (WSEC)	\$ 26,900	-	-	-	-	
Sliders, U-0.28	\$ 28,900	\$ 2,000	7%	\$ 179	\$ 4,700	<0 (11)
Sliders, U-0.24	\$ 33,400	\$ 6,500	24%	\$ 358	\$ 12,600	<0 (18)
Casement, U-0.32	\$ 47,700	_	-	-	_	-
Casement, U-0.28	\$ 49,700	\$ 2,000	4%	\$ 179	\$ 4,700	<0 (11)
Casement, U-0.24	\$ 56,600	\$ 8,900	19%	\$ 358	\$ 12,600	<0 (25)
Larger Sliders, U-0.28	\$ 46,800	\$ 19,900	74%	\$ (320)	\$ 7,100	_
Larger Sliders, U-0.24	\$ 50,200	\$ 23,300	87%	\$ (52)	\$ 18,900	_
* Seattle City Light						-1

Notes:

Standard size is, 30 sf/window, total 60sf/apt (~33% WWR) Larger size is 50% more window area, 90sf/apt (~50% WWR)

Windows - Conclusions


- 1) Upgrading to improved double pane (U-0.28-0.26) is a no-brainer.
- 2) Upgrading to triple pane should be considered, especially if incentives available.
- 3) If you go with double pane, get highest performing and target 25-30% WWR.
- 4) Fiberglass for color choice, but not necessarily performance
- 5) Select stainless hardware and user-friendly latches.

Apartment Heating

<u>Apartment Heating – Electric Resistance</u>

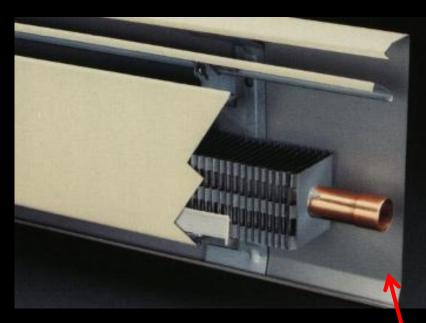
Cove

In-wall

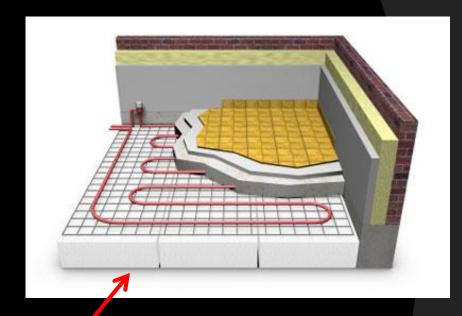
If installed on outside wall, important to insulate walls/headers behind

Baseboard

<u>Apartment Heating – Electric Heat Pumps</u>



Packaged Terminal Heat Pump (PTHP)



Ductless Heat Pumps (DHP)

<u>Apartment Heating – Hydronic</u>

Hydronic baseboard

Radiant floor

If installed on outside wall or on-grade, need to insulate walls/floors

<u>Apartment Heating - Survey Results</u> <u>Owners</u>

- Electric wall heaters, radiators and cove heaters are proven to be most cost effective to operate
- Hard to realize payback for upgrading to more efficient system
- Radiant hydronic heaters are problematic to maintain

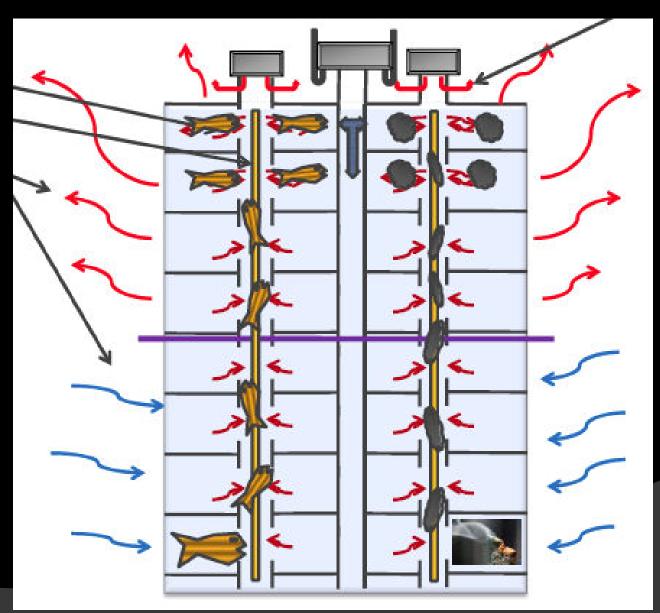
<u>Apartment Heating - Survey Results</u> <u>Builders</u>

- Electric baseboard heat is most cost effective, but doesn't always work well with unit layouts and venting systems
- Numerous recommendations for Ductless Heat Pumps, especially for
 - larger apartments or townhomes
 - Eastern WA
 - Senior populations.

<u>Apartment Heating – Costs</u>

Description	First Costs	\$ Cost Increase	% Cost increase	(nnual Cost vings	Utility centive*	Simple Payback (yrs)
Electric In-Wall	\$ 15,000	\$ -	0%	\$	-	\$ -	-
Electric Cove	\$ 15,000	\$ -	0%	\$	-	\$ -	-
Electric Baseboard	\$ 15,000	\$ -	0%	\$	-	\$ -	-
Ductless HP	\$222,500	\$207,500	1383%	\$	2,600	\$ 30,000	68
PTHP	\$132,500	\$117,500	783%	\$	3,200	\$ 25,000	29
Hydronic Baseboard	\$200,000	\$185,000	1233%	\$	1,800	\$ -	103
* Seattle City Light						,	

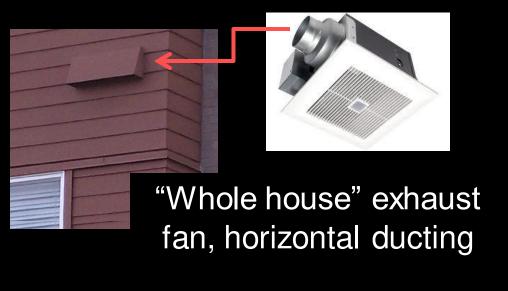
Notes:

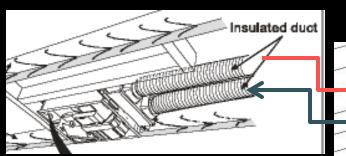

Installed costs for building with 50, 600sf (1bd) apts R-21 wood walls, U-0.28 windows (60sf/apt, ~33% WWR), 30cfm continuous ventilation

Electric resistance systems last 8yrs, others 15+

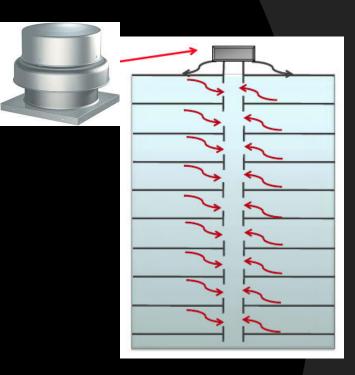
Apartment Heating - Conclusions

- Electric resistance is unbeatable in terms of first cost.
- Systems with higher efficiency (DHPS, PTHPs, etc) make more sense when cooling is needed, heating loads can't be reduced, or for larger units (>1500sf).
- For smaller units, recommend prioritizing envelope upgrades and right-sizing ventilation (discussed next...)


Apartment Ventilation

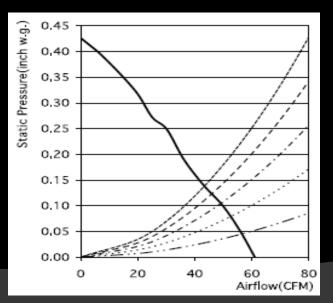


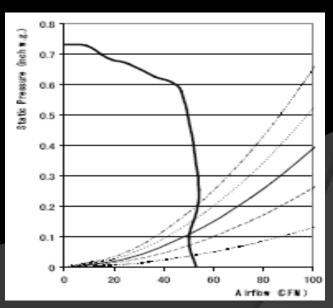
Apartment Ventilation – Survey Results


- Post occupancy audits some whole house systems have been overdesigned.
- Whole house fans noise can be bothersome
- Air quality, smells and mold issues in older buildings
- Trickle vents are problematic
- Only one owner has HRV. Noted added maintenance time to change filters.

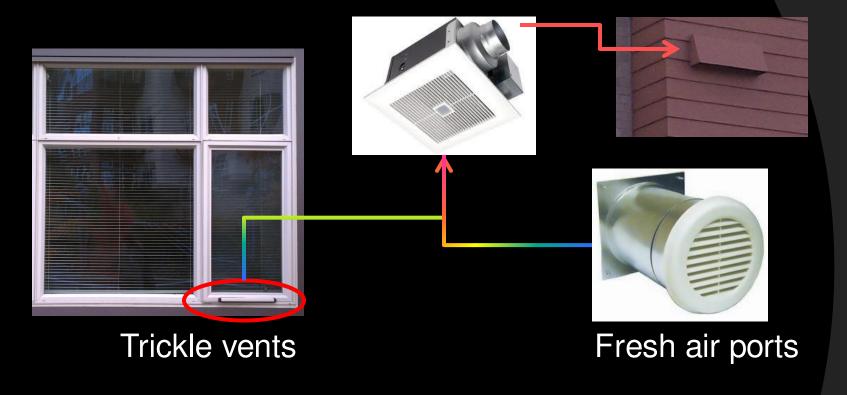
Apartment Ventilation – Ducting

Heat recovery ventilator (HRV, horizontal or through wall ducting


Central exhaust fan, vertical ducting


Apartment Ventilation – Ducting

Horizontal Ducting	Vertical Ducting
Can compartmentalize apartments	Units connected between floors, contributes to stack and odor migration
Balance one unit at time, easy with DC motors	Need to balance across multiple units
Ducts easier to seal, can right- size fans	Ducts harder to seal, leads to over-ventilation, air migration
Tenant pays for fan electricity	Owner pays for fan electricity
In-unit HRV possible	Central HRV possible, but
Wall penetrations	Roof penetrations (usually)


<u>Apartment Ventilation – Fan Types</u>

AC Motor	DC Motor
Low cost	Higher cost, but cost-effective
Higher sones (>1, noiser)	Lower sones (<0.5, quieter)
Low efficiency (1-2 cfm/Watt)	High efficiency, (7-10 cfm/Watt)
Constant speed, at mercy of duct static!	Variable speed, automatically adjust to duct static

Apartment Ventilation – Fresh Air Inlets

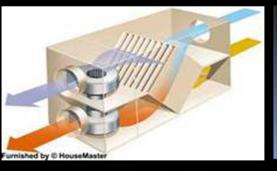
Trickle Vents	Fresh Air Ports			
Open or closed	Optional self-adjusting dampers			
Less cost	More cost			
They break or are closed by occupants	No user actuated parts			

<u>Apartment Ventilation – Sizing</u>

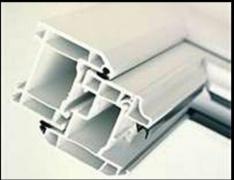
- Ventilation is typically largest component of apartment heating bill.
- IMC prescriptive fan sizes too large for smaller apartments (<1500sf).
- Recommend using ASHRAE 62.2 to calculate required ventilation.
- If optimizing ventilation rates, need to:
 - Install quality fan and duct system
 - Test fans and controls after install
 - Educate tenants on purpose
 - Check flow rates periodically

<u> Apartment Ventilation – Costs</u>

- Payback on DC motor fans and controls <2-6 years.
- Fan controls allow whole house fans to also provide bathroom (and maybe laundry) exhaust...Two or three fans for the price of one!
- Payback for HRV >10yrs, but will be less in colder climates or where more ventilation air is needed.



Conclusion


Thank you!

Survey respondents

Dan Cantrell and Harry Hoffman from HDC Heather Bunn and Ryan Meno from RAFN

8

QUESTIONS & DISCUSSION

Contact info

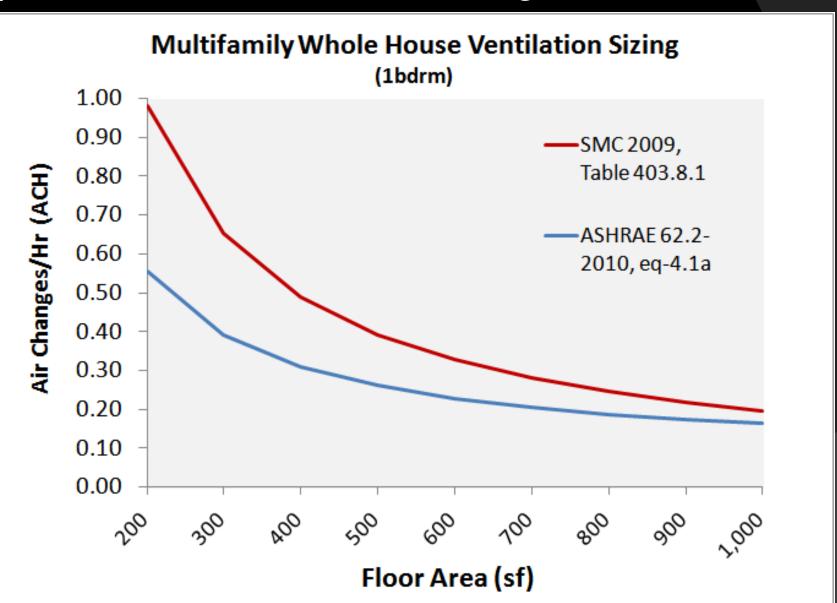
Dave Reddy – 360 Analytics david@360-Analytics.com

Lance Deskins – Milgard Windows Lance Deskins@milgard.com

Becky Bicknell – Bellwether Housing bbicknell@bellwetherhousing.org

Valerie Thiel – Sage Architectural Alliance val@sagearchalliance.com

Resources


www.housingconsortium.org

ww.buildinggreen.com

www.efficientwindows.org

www.windowattachments.org

Apartment Ventilation – Sizing

